Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58.

نویسندگان

  • Pu Liu
  • Eugene W Nester
چکیده

Agrobacterium tumefaciens induces crown gall tumors by transferring a piece of its tumor-inducing plasmid into plant cells. This transferred DNA encodes the synthesis of indole acetic acid (IAA) and cytokinin, and their overproduction results in tumor formation. The transfer is initiated by a two-component regulatory system, VirA/G recognizing plant signal molecules in the plant rhizosphere and activating a regulon on the tumor-inducing plasmid, which is required for the processing and transfer of DNA and protein. Although a great deal is known about vir gene activation, nothing is known about whether or how the vir gene regulon is inactivated after plant cell transformation. Presumably, just as a mechanism exists for activating the vir gene regulon only when a plant is in the immediate environment, a mechanism should exist for inactivating the same regulon once it has fulfilled its mission to transferred DNA into plant cells. We now show that IAA inactivates vir gene expression by competing with the inducing phenolic compound acetosyringone for interaction with VirA. IAA does not inhibit the vir genes in cells containing a constitutive sensor virA locus, which does not require any signal molecules to become phosphorylated. At higher concentrations, IAA inhibits the growth of Agrobacterium and many other plant-associated bacteria but not the growth of bacteria that occupy other ecological niches. These observations provide the missing link in the cycle of vir gene activation and inactivation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Citrate synthase mutants of Agrobacterium are attenuated in virulence and display reduced vir gene induction.

A citrate synthase (CS) deletion mutant of Agrobacterium tumefaciens C58 is highly attenuated in virulence. The identity of the mutant was initially determined from its amino acid sequence, which is 68% identical to Escherichia coli and 77% identical to Brucella melitensis. The mutant lost all CS enzymatic activity, and a cloned CS gene complemented a CS mutation in Sinorhizobium. The CS mutati...

متن کامل

Reexamining the role of the accessory plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58.

Isogenic strains of Agrobacterium tumefaciens carrying pTiC58, pAtC58, or both were constructed and assayed semiquantitatively and quantitatively for virulence and vir gene expression to study the effect of the large 542-kb accessory plasmid, pAtC58, on virulence. Earlier studies indicate that the att (attachment) genes of A. tumefaciens are crucial in the ability of this soil phytopathogen to ...

متن کامل

Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana.

Agrobacterium tumefaciens causes crown gall disease by transferring and integrating bacterial DNA (T-DNA) into the plant genome. To examine the physiological changes and adaptations during Agrobacterium-induced tumor development, we compared the profiles of salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and auxin (indole-3-acetic acid [IAA]) with changes in the Arabidopsis thaliana tra...

متن کامل

Ethylene production in plants during transformation suppresses vir gene expression in Agrobacterium tumefaciens.

Ethylene evolution from plants inhibits Agrobacterium-mediated genetic transformation, but the mechanism is little understood. In this study, the possible role of ethylene in Agrobacterium-mediated genetic transformation was clarified. It was tested whether or not plant ethylene sensitivity affected genetic transformation; the sensitivity might regulate bacterial growth during co-cultivation an...

متن کامل

An Agrobacterium tumefaciens Strain with Gamma-Aminobutyric Acid Transaminase Activity Shows an Enhanced Genetic Transformation Ability in Plants

Agrobacterium tumefaciens has the unique ability to mediate inter-kingdom DNA transfer, and for this reason, it has been utilized for plant genetic engineering. To increase the transformation frequency in plant genetic engineering, we focused on gamma-aminobutyric acid (GABA), which is a negative factor in the Agrobacterium-plant interaction. Recent studies have shown contradictory results rega...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 12  شماره 

صفحات  -

تاریخ انتشار 2006